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1.  Introduction

Research on vintage capital models reached its zenith in the mid-1960�s.  Vintage capital

research declined after the 1960�s because of both technical difficulties inherent in the models

and the conclusion of the papers that equilibrium growth rates are not affected by the choice of

how technology is modeled.  The classic papers of this era, Solow (1959), Phelps (1962), Phelps

(1963), and Solow, Tobin, Weizsäcker, and Yarri (1966), examine neoclassical, non-

optimization, growth models in which technological growth and the savings rate are exogenous

parameters.  Berger (2001) examines optimization versions of these classic papers, and showed

that the vintage and non-vintage putty-putty models are characterized by substantially different

transitional dynamics. The rate of σ-convergence, the rate at which per-capita output levels

converge, and the rate of β-convergence, the rate at which the growth rate of output approaches

the steady state growth rate, are significantly higher in putty-putty vintage capital models than

their non-vintage counterparts.  These differences are the result of the different optimal savings

rates under the vintage and non-vintage regimes.

While the neoclassical framework illustrates potential differences arising from modeling

technology as embodied (vintage capital) or disembodied (non-vintage capital), the assumption

that the growth rate of technology is exogenous may be viewed as excessively restrictive.

Improvements in technology often arise as the result of dedicated research.  In this paper, I

examine two-sector growth models in which there is a final goods sector and a research sector.

The models are non-scale models in that the equilibrium growth rates of the economy are

unaffected by the size or scale of the economy.  The models are putty-putty, meaning that there

is factor substitutability at both the time of installation of the capital and for all time thereafter.
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Eicher and Turnovsky (1999, 2001) provide a general framework for examining non-scale

balanced growth equilibria in two-sector models.  I adapt their framework to the vintage capital

models.

I examine two models that differ in the way technology is produced.  The first model

utilizes an AK production function in the research sector.  In one-sector AK growth models, the

equilibrium growth rate is the product of the savings rate and the exogenous parameter A, the

constant marginal product of capital.  AK models are therefore true endogenous growth models

in which actors in the economy affect the long-run growth rates.  The same type of result arises

in the AK model of this paper. Different sectoral allocations of labor between the vintage and

non-vintage capital cases lead to different equilibrium growth rates.

The second model is a vintage capital version of the general two-sector model used in

Eicher and Turnovsky (1999, 2001).  This model utilizes Cobb-Douglas production in the

research sector.  Because the equilibrium growth rates do not depend on choice variable, the

growth rates are the same in the vintage and the non-vintage capital cases.1  While the vintage

and non-vintage versions have the same steady state growth rates, they do have different savings

rates and sectoral allocations of labor.  Therefore, the convergence rates in the two versions are

likely to be different as they are in the neoclassical putty-putty model.

The paper is organized in the following manner.  Section 2 discusses the common

characteristics of the two models of the paper, and the modeling differences between the vintage

and non-vintage cases.  Section 3 is a discussion of the model with AK production in the

research sector.  Section 4 discusses the model with Cobb-Douglas production in the research

                                                
1 . Jones (1995) referred to models in which the steady state growth rates are unaffected by agents� choices as �semi-
endogenous� growth models.
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sector.  Section 5 contains concluding remarks.  Appendix 1 examines the production

maximization that occurs each period that leads to the formation of the aggregate capital stock

and indirect production function.

2.  Common Model Characteristics

The models are central planner problems in which the planner maximizes the discounted

utility resulting from a flow of consumption.  These are continuous-time optimal control

problems.  The utility function used is a constant-elasticity of intertemporal-substitution utility

function:

( )11 1 for 1
1( )
ln for 1

C
U C

C

γ γ
γ

γ

−� − ≠� −= �
� =�

(1)

The objective function of the central planner is:

( )
0

Maximize   ( )                 0,     0t

t

e U C t dtρ ρ γ
∞

−

=

> >� (2)

At each instant, the central planner makes a consumption/savings choice, and a labor allocation

choice.  The choice variables are the level of consumption, C, and the fraction of labor devoted

to the final goods sector, m.  Given the labor, capital, and technology stocks at an instant in time,

the labor allocation choice determines the output in the research and final goods sectors.  The

consumption choice determines the allocation of final goods between consumption and

investment.  Final goods not consumed are converted into capital at no cost.  The model could be

equivalently written with the savings rate, rather than the level of consumption, as a choice

variable.
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Depreciation is modeled in this paper as the standard �iceberg� depreciation for both the

capital stock and the technology stock. In other words, exogenously given fractions of the stocks,

Aδ  and Kδ , wear out each period.  In vintage capital models, the method of depreciation is less

trivial than in non-vintage models.  Because capital is heterogeneous in vintage capital models, it

must be specified from which vintages the depreciation takes place.   In this paper, each vintage

loses the same fraction of its stock.  This method translates into a constant fraction of the

aggregate capital stock depreciating each period.  The formulation of the aggregate capital stock

is discussed below and in the appendix.  Results are given in the vintage and non-vintage cases

for Aδ  and Kδ  positive, and for 0A Kδ δ= = .  The no depreciation case is important because it

highlights the fact that in the vintage capital versions of the models, older vintages are utilized

less (i.e. less labor is assigned to older vintages) for purely economic reasons rather than any

physical one.

The essence of vintage capital models is that the capital stock is heterogeneous.

Generally the heterogeneity stems from capital embodying different levels of technology that

makes newer vintages more productive.  This increase in productivity can take many forms.  For

example, in fixed factor models such as Phelps (1963) and Solow, Tobin, Weizäcker, and Yarri

(1966), the increase in productivity is often modeled as a lower labor requirement per unit of

capital, rather than an increase in potential output per unit of capital.  This form of improvement

is called purely labor enhancing technological change.  In this paper, there is a spectrum of

vintages, and final goods production utilizing each vintage of capital is represented by a unique

production function:

NA K
v v v vY A N Kσσ σ= (3)



5

vY  is the rate of output at an instant in time utilizing vintage v.  vA  is the technology inherent in

vintage v.  Aσ , Nσ , and Kσ  are the exogenous elasticities associated with the subscripted factor.

vN  is the labor assigned for use with capital of vintage v.  Unlike in the fixed factor case, the

multiplicative nature of the Cobb-Douglas production function precludes differentiation between

�labor� enhancing and �capital� enhancing technological change. Letting m be the fraction of

labor assigned to the final goods sector, then 
t

v
v V

N dv mN
=−

=� , where V  is the number of vintages

available at t=0.

In equation (4), vK  is the amount of capital of vintage v used. vK  at time t is equal to the

investment corresponding to vintage v (or the exogenously given initial capital), discounted for

the depreciation which has occurred since that vintage�s installation:

( )  for  0   ,   for  0K Kt v t
v v v vK I e v t K K e vδ δ− − −= < ≤ = ≤ (4)

The total amount of capital at time t is:

0
( )

0

( ) K K

t
t v t

v v
v v V

K t I e dv K e dvδ δ− − −

= =−

= +� � (5)

where vK  is the given amount of each vintage at t=0.  Taking the derivative of (5) with respect to

time gives the standard capital accumulation equation:

0
( )

0

K K

t
t v t

K v K v K
v v V

K I I e dv K e dv I Kδ δδ δ δ− − −

= =−

= − − = −� �� (6)

Total output is 
t

v
v V

Y Y dv
=−

= � .  At each instant, output is maximized given the stocks of

technology, capital, and labor assigned to the final goods sector.  This maximization involves
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allocating labor to each vintage of capital (Appendix 1).  The optimal allocation of labor

resulting from this maximization enables the use of an indirect total production function Y,

utilizing an aggregate capital stock, Q.  Solow (1959) was the first paper to utilize such an

aggregate stock.  The indirect production function is:

1( ) N NY mN Qσ σ−= (7)

where

1 1
A K

N N

t

v v
v V

Q A K dv
σ σ
σ σ− −

=−

= � (8)

It is interesting to note that the indirect production function utilizing the aggregate capital stock

exhibits constant returns to scale, regardless of the elasticities specified in the production

function of each vintage.  However, the elasticities of technology and capital appear in the new

capital accumulation equation.

Because technology appears in (8), it is necessary to discuss depreciation of technology

before deriving the aggregate capital accumulation equation.  Unlike the capital stock, which is

heterogeneous, there is a single technology stock for the economy. This technology stock can

also be thought of as a stock of knowledge.  The level that the technology stock attains at each

point in time (corresponding to a vintage) is designated by vA .  In this paper, technology

depreciation only appears in the technology accumulation equation, even though the technology

stock appears in the definition of the aggregate capital stock.  The rationale is that in order to

keep the stock of knowledge constant, there must be some minimal investment in research in

order to maintain skills.  This rationale does not imply, however, that the knowledge or

technology embodied by an existing unit of capital somehow depreciates within that capital.  The
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actual physical depreciation of capital is accounted for by Kδ , and therefore it is not necessary to

take into account any additional loss of aggregate capital that occurs due to technology

decreasing in the previously obtained stock.  Using (4) and taking the time derivative of (8):

1 1

1

A K

N N K
K

N

Q A I Q
σ σ
σ σ σ δ

σ
− − � �

= −� �−� �

� (9)

Q�  is the instantaneous change in the aggregate capital stock with respect to time. A  is the level

of technology represented in the newest capital.  If all capital utilizes the latest technology, then

from (3), the indirect total production function is simply:

( ) NA KY A mN Kσσ σ= (10)

and (6), the standard accumulation equation, is used.

3.  Model #1: AK Research Sector

In the standard neoclassical growth model, technological growth is exogenous and

increasing subject to a constant growth rate.  The most natural extension of this phenomenon to a

two-sector model is the adoption of �AK� technology in the research sector:

(1 ) AA m gA Aδ= − −� (11)

where g  is an exogenous parameter, and Aδ  is the depreciation rate of technology.  The notation

is a little confusing because the �K� in �AK� refers to the stock, which in the research sector of

this paper is designated by �A.�  The �A� in �AK� refers to the productivity of the stock.  In this

paper, that term is the product (1 )m g− .  This is a natural extension of the neoclassical model

because if m, the sectoral allocation of labor, is exogenous as opposed to being a choice variable,
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then the model reduces to the neoclassical model with an exogenous growth rate of technology.

Dividing both sides of (11) by A:

(1 )A A
Ag m g
A

δ= = − −
�

(12)

From (12), it can be seen that the labor allocation choice determines the growth rate of

technology, and that, ignoring depreciation, g  is the rate of technological growth if all labor is

applied to research ( 0)m = .

There are intuitive reasons why this is an appropriate form for the research sector.  While

the central planner may choose the growth rate of technology, the choice is bounded.  This has

intuitive appeal in that one can imagine that the growth of knowledge may be bounded for a

given time period.  Basic research often takes time in order to be applied as shown in Adams

(1990).  Also, new research builds on previous research.  The requirement that many discoveries

must be found sequentially combined with empirically found gestation periods, limits the rate at

which new ideas can be discovered.  g  can be used to represent this upper bound.

For tractability and to coincide with the previous literature, this section of the paper will

focus on the case in which final goods production exhibits constant returns to scale in labor and

capital ( 1)N Kσ σ+ = , and exhibits constant returns in technology ( 1)Aσ = .  These are the

parameter values used in Phelps (1962) and Berger (2001).

Non-Vintage Case

In the non-vintage case, the central planner�s problem can be summarized by the



9

following four equations: the objective function, the final goods production function, the

technology accumulation equation, and the capital accumulation equation respectively:

1

0

1           0,        0
1

t

t
C e dtγ ρ ρ γ

γ
∞ − −

=
> >

− � (13)

1( )         0<m<1,    0< 1K K
KY A mN Kσ σ σ−= < (14)

(1 )             0 1,      0A AA m gA A gδ δ= − − < < ≥� (15)

1( )           0K K
K K KK Y C K A mN K C Kσ σδ δ δ−= − − = − − ≥� (16)

The optimality and transversality conditions resulting from the central planner problem can be

summarized by the following equations and (14)-(16):

C γ− = Λ (17)

1(1 ) K K K
K

g
m N Kσ σ σσ − −

Λ =
Φ −

(18)

1 1(1 ) K K K
Am g m N Kσ σ σδ ρ− − Λ Φ− − + = −

Φ Φ

�

(19)

1 1 1K K K
K KAm N Kσ σ σσ δ ρ− − − Λ− = −

Λ

�

(20)

lim lim 0t t

t t
e A e Kρ ρ− −

→∞ →∞
Φ = Λ = (21)

Φ  and Λ  are the shadow prices of technology and capital respectively.  (17) equates the

marginal utility of consumption to the shadow value of capital. This makes intuitive sense since a

unit of consumption can be traded one-to-one for a unit of capital.  Because laobr is

homogeneous, (18) equates the marginal value of fractional labor in the technology sector with

that in the final goods sector.  (19) and (20) equate the returns to consumption with the returns to

technology and capital, respectively.
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I define a balanced growth path be one in which i) all stocks and flows grow at a constant

rate, ii) m is constant, and iii) the savings rate, s, is constant.  From these conditions and the

production functions, the balanced growth rates of the primal variables can be determined.

Repeating equation (12):

(1 )A A
Ag m g
A

δ= = − −
�

(22)

From (16), KK sY Kδ= −� , so K K
K Yg s
K K

δ= = −
�

.  In the steady state, s, gK, and Kδ  are constant

so Y Kg g= .  Dividing (16) by K, and taking the time derivative:

1 (1 )
1 1 1

A
K Y C A

K K K

K Y C mg g g g n g n
K Y C

δ
σ σ σ

−= = = = = = + = − +
− − −

�� �

(23)

(23) is very similar to the growth rate in the neoclassical one-sector model.  The difference is

only that Ag would be replaced by the exogenous growth rate of technology.

The growth rates of the shadow prices can be found by using (22) and (23) in

combination with the optimality conditions.  Taking the time derivative of (17):

(1 )
1 1

A
Y

K K

mg g g nγ γδγ γ
σ σΛ

Λ −= = − = − + −
Λ − −

�

(24)

Taking the time derivative of (18):

( )(1 ) ( )(1 ) (1 )
(1 ) (1 )

K K A
K K K

K K

mg n g g g nσ γ σ γ δσ σ γ
σ σΦ Λ

Φ − − −= = − + + = − + −
Φ − −

�

(25)

It can be shown that:

A Yg g g gΛ Φ− = − (26)
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Using the above growth rates, it is possible to write the optimality conditions in terms of

stationary variables.  Let /Y Yg nβ = ,  /A Ag nβ = ,  /g nβΦ Φ= , and /g nβΛ Λ= .  Then on the

equilibrium growth path the following are stationary variables: / Yc C N β= , / Aa A N β= ,

/ Yk K N β= ,  / N βφ Φ= Φ , and / N βλ Λ= Λ .  Substituting the stationary variables into the

optimality conditions, final goods production, and the accumulation equations:

c γ λ− = (27)

(1 )

K

K
K

gm
k

σ

σ
λ
φ σ

=
−

(28)

1(1 ) K K
Am g m k gσ σ λδ ρ

φ
−

Φ− − + = − (29)

1 1K K
K Kam k gσ σσ δ ρ− −

Λ− = − (30)

1 K Ky am kσ σ−= (31)

(1 )A Ag m g δ= − − (32)

K K
y cg
k k

δ= − − (33)

Substituting (28) into (29), I obtain an equation in which m is the only choice variable.  Solving

for m:

(1 )( ) ( )( 1)K An n gm
g

σ ρ γ δ γ
γ

− + − + − −= (34)

Analyzing (34) provides insight into what parameter values will provide an interior solution

(0<m<1).  The results are shown in (35) and (36):

(1 )( ) ( 1)      1K Ag n n mσ ρ γ γ δ> − + − − − � < (35)
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(1 )( ) ( 1)1,
1

1                                                                0
(1 )( ) ( 1)1,

1

K A

K A

n ng

m
n ng

σ ρ γ δ γγ
γ

γ
σ ρ γ δ γγ

γ

− + − − − �< < �−
��= � >�
�− + − − −
�> >

− ��

(36)

(35) is a statement that the addition to growth of sacrificing labor for research must be

sufficiently high if there is to be sustained sacrifice in the long run.  Given 1γ ≥ , (36) will hold

for any Ag δ> .  If 1γ < , there is always a range of g  for which (36) holds, but the size of the

range goes to zero as 0γ → .

Table 1 gives the benchmark parameter values for this model, while Tables 2 and 3

provide the values of m for a range of γ  and g .  Table 2 contains the results using the

benchmark parameters and Table 3 contains the results for when there is no depreciation.  The

benchmark parameters are substantially the same as those used in the literature.  The production

elasticities are the same as those in Berger (2001), while the depreciation rates are equal to those

used in Eicher and Turnovsky (1999, 2001).  As would be expected, m is decreasing in g  and

increasing in γ .

( )2

1 0m
g gγ

∂ = − <
∂

(37)

( ) ( ) ( )
( )2

1 1
0 if   1,   K A

A

n g gm g
g

σ δ γ
γ δ

γ γ

− + − −� �∂ � �= ≥ ≥ >
∂

(38)

(37) and (38) are expected because increasing g  increases the return to allocating labor

to the research sector, and increasing γ  increases the relative return to earlier consumption.

Tables 6 and 7 show the growth rate of output corresponding to the levels of m.  All of the tables
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in this paper corresponding to growth rates and savings rates show non-zero values only when

the corresponding values of m are between 0 and 1.

Using the solution for m, (34), one can solve for the equilibrium growth rates of the

primal and dual variables.  Substituting (31) into (30), I solve for y
k

.   Substituting  y
k

 into (33),

yields c
k

.  y
k

 and c
k

 give the savings rate:

[ ]
[ ]

(1 )( )
(1 )( )

K K A K

K K A

n g
s

n g
σ ρ γδ δ σ

σ δ δ γ
− − − − +

=
− − − − +

(39)

From (39) it can be shown that:

                 0

                 0

                 0

K

K

K

K

K

K

s
g
s
g
s
g

δ ργ
δ

δ ργ
δ

δ ργ
δ

+ ∂< � >
∂

+ ∂= � =
∂

+ ∂> � <
∂

(40)

If 0Kδ = :

( )
[ ] 2 2

1
0

(1 )( )
K K

K K A

s
g n g

ρσ γ σ
σ δ δ γ

−∂ = >
∂ − − − − +

(41)

Tables 4 and 5 provide the values of the savings rate for ranges of γ  and g  under depreciation

and no depreciation regimes.  Also from (39),

[ ] [ ]( )sgn sgn (1 )( ) (1 )( )K K A K A
s n g n gσ δ δ σ ρ δ
γ

� �∂ = − − − − + − − − + −� �∂� �
(42)

For reasonable parameter values, the g  terms will dominate the other terms, giving 0s
γ

∂ <
∂

.
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Vintage Case

In the vintage case, equations (43)-(46), the objective function, the final goods production

function, the capital accumulation equation, and the technology accumulation equation,

summarize the central planner�s problem.  The differences between the vintage and non-vintage

cases appear in equations (44) and (46), the production function and capital accumulation

equations respectively.  Writing the problem using aggregate capital, Q, the technology stock no

longer appears in the production function and now appears in the capital accumulation equation.

1

0

1           0;        0
1

tC e dtγ ρ ρ γ
γ

∞ − − > >
− � (43)

1( )         0<m<1,    0< 1K K
KY mN Qσ σ σ−= < (44)

(1 )             0 1,      0A AA m gA A gδ δ= − − < < ≥� (45)

( )1 1
1( ) ( )K K K K

K KQ A Y C Q A mN Q C Qσ σ σ σδ δ−= − − = − −� (46)

The optimality and transversality conditions are summarized by the following equations,

where Φ  and Λ  are the shadow prices of technology and capital respectively, along with (44)-

(46).  The interpretations of the equations are the same as in the non-vintage case.

1
KC A σγ− = Λ (47)

1
1(1 )

K

K K K K

g

A m N Q
σ

σ σ σ σα
−

− −

Λ =
Φ

−
(48)

1
1 11(1 ) ( )

K

K K K K
A

K

m g A m N Q C
σ

σ σ σ σδ ρ
σ

−
− − Λ Φ− − + − = −

Φ Φ

�

(49)

1
1 1 1K K K K

K KA m N Qσ σ σ σσ δ ρ− − − Λ− = −
Λ

�

(50)



15

lim lim 0t t

t t
e A e Qρ ρ− −

→∞ →∞
Φ = Λ = (51)

Using the definition of a balanced growth path from the non-vintage case, it is possible to

solve for the equilibrium growth rates of the primal and dual variables using the production

functions and optimality conditions.  From (45):

(1 )A A
Ag m g
A

δ= = − −
�

(52)

This is the same growth rate equation as in the non-vintage case. However, it will be shown that

the equilibrium value of m will not generally be the same in the two cases.  Thus, the equilibrium

growth rate of technology will be different, and therefore all of the growth rates will differ

between the two cases.

From (46), 
1

K
KQ sA Y Qσ δ= −� , so 

1
1 1 1K K K K

Q K
Qg sA m N Q
Q

σ σ σ σ δ− − −= = −
�

.  Taking the

time derivative of Qg , and then solving for Qg :

1 1
(1 ) (1 ) (1 )

A
Q A

K K K K K K

mg g n g nδ
σ σ σ σ σ σ

−= + = − +
− − −

(53)

Given the same labor allocation, the aggregate capital stock grows at a faster rate than the capital

stock in the non-vintage case.  However, by the assumption of a constant savings rate in the

definition of equilibrium, the non-aggregated units of capital must grow at the same rate as

output in both cases.  The growth rate of output is shown in (54) to have the same functional

form as in the non-vintage case.  Taking the time derivative of (44) and then dividing by Y:

1 1(1 )
1 1Y C K Q K A

K K

Y C mg g g n g n
Y C

σ σ δ
σ σ

−= = = = + − = − +
− −

��

(54)
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As in the non-vintage case, it can be shown that the difference in the growth rates of the shadow

values of the two sectors is equal to the difference in the growth rates of the sectors themselves.

One can solve for the stationary variables using the same methodology as in the non-

vintage case.  This leads to equation (55) which is solely a function of m ( Ag , Qg , gΦ , and gΛ

being functions of m).

( )
(1 )( )

Q K
A

K K

g mg
g g

g
δ

ρ
σ ρ δ Φ

Λ

+
= − −

− + −
(55)

(55) is a quadratic equation in m, which can be written in the form 2
1 2 3 0d m d m d+ + = , where:

2 2

1
( 2 )

(1 )
K K K

K K

gd γ σ γ γσ σ
σ σ

+ − += −
−

(56)

There will be a unique solution to m  if and only if d1, d2, and d3 form a perfect square or 1 0d = .

It can be shown however that there is no combination of positive Kσ  and γ  such that 1 0d = .

Therefore, there will generally be two solutions to m , but depending on parameter values, there

may be no solutions such that 0 1.m< <  Tables 8 and 9 give the values of m  over a range of γ

and g  values, given the benchmark parameter values and the no depreciation case.  Zeros in

tables 8 and 9 represent occurrences in which the solution to m is an imaginary number.  Only

one solution for m is given for each ( , )gγ  combination.  The other solution is not included

because it is very much a knife�s edge solution.   For each γ , there is only a range of g  of .02

for which 0 1m< < .

Using the solution to m , one can solve for the equilibrium growth rates of the primal and

dual variables. Tables 10 and 11 give the savings rates corresponding to the values of m . From
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Table 10, it can be seen that 0s
g

∂ >
∂

 for values of  5γ < .  Because of the complicated nature of

the solution for m, it is not possible to get closed form conditions for the sign of s
g

∂
∂

 and s
γ

∂
∂

 as

in the non-vintage case.

The optimal sectoral allocation of labor is different between the vintage and non-vintage

cases.  Thus, the equilibrium growth rates will be different between the two models, as shown in

tables 12 and 13.  This is the first model that shows different equilibrium growth rates for vintage

and non-vintage cases.  The growth rate of the non-vintage case is higher (i.e. m  is lower) than

in the vintage case for parameter values in which m  is an interior solution for both cases.

Intuitively this is because the marginal returns from increasing technology are higher in the non-

vintage case.  In disembodied models, technology improves the entire production process.  For

example, technological growth of 3% in the non-vintage case leads to output increasing by 3% if

there is no increase in factors.  In the embodied technology case on the other hand, an increase in

technology of 3% only means that output will increase if it is accompanied by investment in the

capital stock.  Also, if the new investment represents only a small fraction of the existing stock,

then the incremental production due to the new technology is far less than 3%.  It can also be

seen from the tables that in the vintage case, a higher g  is required to induce any labor to be

allocated to the research sector than in the non-vintage case.

Because the level of m determines the growth rate of the economy, economies with

different labor allocations will not converge in the long run either in the σ -convergence or β -

convergence sense.  Since the allocation of labor between the sectors is affected by preferences,

economies with different preferences will not converge.  This model provides one plausible
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explanation for the low benchmark measurements of convergence of approximately 2% in the

empirical literature.2  It is possible that the cross-country regressions include economies with

different preferences, thereby mixing economies that do converge with others that do not,

resulting in a convergence rate which is below that shown in the theoretical literature.

For 1γ ≥ , the savings rate of the vintage case is greater than the non-vintage case, as in

the neoclassical model.  The savings rate is higher in the vintage model because the marginal

return to capital is higher in the vintage model.  Investment provides not just additional units of

capital but entrée to new technology.

In the vintage model, the quantity of labor applied to a vintage goes to zero as the age of

the capital goes to infinity.  Given an amount of labor, a newer vintage has a greater marginal

product of labor than an older vintage.  Hence, equalizing the marginal products to maximize

output leads to less labor applied to older vintages, and given a reasonable labor growth rate,

each period the capital of any existing vintage contributes less output than it did the previous

period.  Depreciation causes a similar effect but for a different reason.  As capital ages, a

particular vintage will contribute less output each year because there is less of that particular

capital.  The similarity in outcomes can be seen in the smaller difference between the savings

rates of the non-vintage/depreciation case and the vintage/no-depreciation case versus

comparisons of the other cases.

4.  Model #2:  Cobb-Douglas Research Sector

The non-vintage model of this section is the model examined in Eicher and Turnovsky

                                                
2 A rate of convergence of 2% was reported in Barro and Sala-I-Martin (1992).
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(1999, 2001).  The model uses a Cobb-Douglas production function in the research sector.  The

two factors of technology production are labor and technology.  While the qualitative results for

m  and s, relating the vintage case to the non-vintage case, are the same as in the previous

section, the growth rates only depend on exogenous parameters and therefore do not differ

between the two cases.  Numerical results are given for the benchmark parameter values used in

Eicher and Turnovksy, as well as a no depreciation case.  The benchmark parameters are listed in

Table 14.  The benchmark parameters feature constant returns to scale in labor and capital for the

final goods sector ( )1N Kσ σ+ = , and increasing returns to labor and technology in the research

sector ( )1N Aη η+ > .  The results, however, are robust for both constant and diminishing returns

in the technology sector.

Non-Vintage Case

The central planner�s problem can be summarized by the following equations:

1

0

1           0;        0
1

tC e dtγ ρ ρ γ
γ

∞ − − > >
− � (57)

( )            0,     0 1NA K
Y Y iY d A mN K dσσ σ σ= > < < (58)

( )(1 )         , >0      0< 1N A
A A A A iA d m N A A dη η δ δ η= − − <� (59)

( )       0NA K
K Y K KK Y C K d A mN K C Kσσ σδ δ δ= − − = − − >� (60)

The variables are the same as in the previous model except that Nη  and Aη  are the elasticities of

production in the research sector, and Yd  and Ad  are exogenous positive constants.
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The optimality and transversality conditions resulting from this model are summarized by

the following equations and (58)-(60):

C γ− = Λ (61)

1

1
(1 ) N N A

N NA K

N A

N Y

d m N A
d A m N K

η η η

σ σσ σ
η
σ

−

−
−Λ =

Φ
(62)

1 1(1 ) ( )N N NA A K
A A A A Yd m N A d A mN Kη η ση σ ση δ σ ρ− − Λ Φ− − + = −

Φ Φ

�

(63)

1( ) NA K
K Y Kd A mN Kσσ σσ δ ρ− Λ− = −

Λ

�

(64)

lim lim 0t t

t t
e A e Kρ ρ− −

→∞ →∞
Φ = Λ = (65)

The balanced growth path is defined as in the previous section, with labor allocation, the

savings rate, and the growth rates constant.  Under these assumptions, it is possible to solve for

the equilibrium growth rates.  Dividing (59) by A and taking the time derivative:

1
N

A
A

Ag n
A

η
η

= =
−

�

(66)

As shown in the previous section in the non-vintage case, the assumption of a constant savings

rate implies that output, the capital stock, and consumption grow at the same rate.  Therefore,

dividing (60) by K and taking the derivative with respect to time:

(1 )
1 (1 )(1 )

N A A A N N A
K Y C

K K A

n gK Y Cg g g n
K Y C

σ σ σ η σ η
σ σ η

+ + −= = = = = = =
− − −

�� �

(67)

Taking the time derivative of (61):

(1 )
(1 )(1 )
A N N A

Y
K A

g g nσ η σ ηγ γ
σ ηΛ
+ −Λ= = − = −

Λ − −

�

(68)
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Taking the time derivative of (62):

( ) ( )

(1 ) (1 ) (1 )    
(1 )(1 )

N N K K A A A

A N A K N A N N A

A K

g n g g g

n

σ η σ σ η

η σ σ σ η η γσ γη σ
η σ

Φ Λ
Φ= = − + + − +
Φ

− − − − − − −=
− −

�

(69)

It can be shown that:

A Kg g g gΛ Φ− = − (70)

All of the growth rates depend only upon exogenous parameters.  Furthermore, they are all

proportional to the labor growth rate.  This is a standard result in two sector Cobb-Douglas

models.  While this result may contradict empirical evidence for single countries, a defense of

this result is if the economy being modeled is a �worldwide� economy.  In that case, higher labor

growth is �beneficial to the growth of worldwide knowledge: the larger the population is, the

more people there are to make new discoveries.�3

Defining stationary variables using the same methodology as in section 3, one can then

solve for those variables.  The solution for the fraction of labor allocated to the final goods

sector, m is:

1
xm

x
=

+
 (71)

where:

( )N A
A

N A A A

gx
g

σ ρ δ η
η σ δ

Φ� �+ −= −� �+� �
(72)

Using m, it is possible to solve for the savings rate:

                                                
3 David Romer, (1990), Advanced Macroeconomics, McGraw Hill, p. 100.
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( )K K K

K

g
s

g
σ δ
ρ δ Λ

+
=

+ −
(73)

Table 14 shows the benchmark parameter values used in this section.  These values are the same

values used in Eicher and Turnovsky (1999, 2001).  Tables 15 and 16 give the values of selected

stationary variables for the benchmark parameters case and the no depreciation case

respectively.4  The labor allocation to the final goods sector is increasing in γ , and the savings

rate is decreasing in γ .

( )
( )

( )( )( )
2 1

0
1 1

N A N A NN

N A A A N A A A A K

x g n
g g

σ η η σ σσ
γ η σ δ γ η σ δ η σ

Φ
� � − +∂ ∂= − = >� �� �∂ + ∂ + − −� �

(74)

( )2 0
1

x
m

x
γ

γ

∂
∂ ∂= >
∂ +

(75)

( )
( )

( )
( )

( )2 2 0K K K K K K
Y

K K

g gs g g
g g

σ δ σ δ
γ γρ δ ρ δ

Λ

Λ Λ

+ +∂ ∂= = − <
∂ ∂+ − + −

(76)

Vintage Case

The central planner�s problem can be summarized by the following equations, where Q is

the aggregate capital stock.  As in the AK model, the differences between the vintage and non-

vintage cases appear in the production and capital accumulation equations, (78) and (80).

1

0

1           0;        0
1

tC e dtγ ρ ρ γ
γ

∞ − − > >
− � (77)

1( )         0<m<1,    0< 1N N
Y iY d mN Qσ σ σ−= < (78)
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( )(1 )         0< 1N A
A A iA d m N A Aη η δ η= − − <� (79)

1 1 1( ( ) )
1

A K

N N N N K
Y K

N

Q A d mN Q C Q
σ σ
σ σ σ σ σ δ

σ
− − − � �

= − −� �−� �

� (80)

The optimality and transversality conditions resulting from this model can be

summarized by the following equations plus (78)-(80).  Φ  and Λ  are the shadow prices of

technology and capital respectively.

( ) 11 1
1

A
K

N
N

K

N

C A Y C
σ σ
σγ σ

σ
σ

−−− −= − Λ
−

(81)

( )

1

11 1 11

(1 ) N N A

A
K

N N N N
N

N A

N Y

d m N A

A Y C d m N Q

η η η

σ σ
σ σ σ σσ

η

σ

−

−− − −−

−Λ =
Φ

−
(82)

( )
1

11 1(1 )
1

A
K

N N NA
N

A
A A A

N

d m N A A Y C
σ σ

η η ση σ
ση δ ρ
σ

−
−− −

Λ Φ− − + − = −
− Φ Φ

�

(83)

( ) 11 1 1( ) ( )
1

A K
N N N N NN K

K Y Y K
N

A d mN Q C d mN Q
σ σ
σ σ σ σ σσ σσ δ ρ

σ
−− − −−

� � Λ− − = −� �− Λ� �

�

(84)

lim lim 0t t

t t
e A e Qρ ρ− −

→∞ →∞
Φ = Λ = (85)

The growth rates of output, consumption, and the shadow value of the technology stock

in the vintage case have the same functional forms as in the non-vintage case.  The growth rate

of the aggregate capital stock is:

( )
( ) ( ) ( )

1
1 1 1

A N N K A
Q

N K A

Qg n
Q

σ η σ σ η
σ σ η

+ −
= =

− − −

�

(86)

                                                                                                                                                            
4 Eicher and Turnovsky (1999,2001) have a computational error which causes their labor allocation variable to differ
from mine.
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The growth rate of the shadow value of the aggregate capital stock is:

1
1 1

K A
Y A

N N

g g gσ σγ
σ σΛ

� �Λ= = − − −� �Λ − −� �

�

(87)

Unlike in the AK model, the growth rates are only functions of exogenous parameters.  Hence

the growth rates that share functional forms between the vintage and non-vintage cases will be

the same.  The levels of the stationary choice variables, however, will be different.  Solving for

the savings rate:

1

1

K
K Q K

N

K
K

N

g
s

g

σσ δ
σ

σρ δ
σ Λ

� �� �
+� �� �� �−� �� �=

� �
+ −� �−� �

(88)

Solving for the labor allocation variable, m:

1
xm

x
=

+
(89)

where:

( )( ) (1 )
1

( )
1

K
A A A A N N K

N

K
A N K Q K A A

N

g g g
x

g g

σρ δ η δ σ σ ρ δ
σ

σσ η σ δ δ
σ

Φ Λ

� �� �
+ − − + − + −� �� �� �−� �� �=

� �� �
+ +� �� �� �−� �� �

(90)

Tables 17 and 18 give the values of selected stationary variables for the benchmark parameter

case and no depreciation case respectively.

The Cobb-Douglas research sector model produces similar qualitative results of the

equilibrium labor allocation and savings rates as the AK research sector model.  The non-vintage

case has uniformly higher allocations to the research sector, reflecting the greater marginal
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returns to technology in that case.  The allocation of labor for both the vintage and non-vintage

cases can be written in the form 
1

xm
x

=
+

.  It can be shown using (72), (90), and (70) that:

( )1
1

1

K
N K Q A

N
V NV

K
K Q K

N

g g g
x x

g

σσ ρ δ
σ

σσ δ
σ

Φ
� �

− + + − −� �−� �=
� �

+	 
−� �

(91)

where the subscripts refer to the vintage and non-vintage cases ( Vx  and NVx  respectively).  For

1γ ≥ , ( ) 0Ag gΦ− − ≥ .  Therefore, the vintage case will have a higher fraction of labor allocated

to the final goods sector if the final goods production function has constant returns to scale in

labor and capital.  The result is in fact more robust and will hold for most reasonable parameter

values found in the literature, but it does depend on the elasticities of labor and capital, the

discount rate, and gamma.

On the other hand, the savings rate is higher in the vintage case, reflecting the greater

marginal returns to investment in that case.  If the production function has constant returns in

labor and capital, it can be shown using (73) and (88), that V NVs s≥ , because Q Kg g≥  (these

terms are in the numerator of the savings rate equations) and 
V NV

g gΛ Λ− ≤ −   (these terms are in

the denominator of the savings rate equations).

Higher levels of γ  encourage earlier consumption; and therefore, as is seen in the

neoclassical model, the savings rate declines in the vintage model as γ  increases.  As in the non-

vintage case, the sign of s
γ

∂
∂

is the sign of g
γ
Λ∂

∂
.  Since g

γ
Λ∂

∂
 is the same for both cases:
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0s
γ

∂ <
∂

(92)

For the same reason, increasing γ  also leads to less labor allocated to the research sector.  In

order for m to be positive and less than one, x must be greater than zero.  The denominator of x is

positive and not a function of γ .  The numerator can be written as:

1 2( ) ( ) ( )h af g f gγ Φ Λ= (93)

where a is a positive scalar, 1f  and 2f  are positive functions of the above growth rates, and

1 2 1df df
dg dgΦ Λ

= = − .  gΦ  and gΛ  are functions of γ .  So x
γ

∂
∂

 has the same sign as h
γ

∂
∂

.  Also

0g
γ
Φ∂ <

∂
 and 0g

γ
Λ∂ <

∂
. Hence:

2 1 0h g ga f f
γ γ γ

Φ Λ� �∂ ∂ ∂= − − >� �∂ ∂ ∂� �
(94)

and therefore 0x
γ

∂ >
∂

 and 0m
γ

∂ >
∂

.

Eicher and Turnovsky (2001) show for the non-vintage case that the convergence rates of

the two sectors depend on the allocation of labor and savings rates.  Therefore it is likely that the

convergence rates will differ between the vintage and non-vintage cases.

5.  Conclusion

This paper demonstrates the significant impact on growth theory results of simplifying

assumptions of disembodied and exogenous technological.  Growth theory is primarily

concerned with long-run growth rates, and the AK research sector model shows that equilibrium
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growth rates can differ between vintage and non-vintage models.  Given the same parameter

values, the equilibrium growth rate of the vintage two-sector AK model is lower than in the non-

vintage model.  Mine is the first demonstration that the equilibrium growth rate can be affected

by whether technology is modeled as embodied or disembodied.

Furthermore, vintage and non-vintage cases have differing returns to technology

production and investment.  Therefore the choice variables related to these decisions have

different equilibrium values.  The central planners of the vintage cases allocate less labor to

research and save a greater fraction of their output.  It is the smaller fraction of labor allocated to

research in the vintage case that results in the lower steady state growth rate in the AK model.

Also, because the preference parameter affects the allocation of labor, preferences affect the

growth rate of output in the AK model.  The implication is that economies with different

preferences will not converge in the long run.  Eicher and Turnovsky (2001) show that stationary

choice variables affect the transitional dynamics in the two-sector, Cobb-Douglas, non-vintage

case.  Having different optimal stationary values, it is likely that future research will demonstrate

that the vintage and non-vintage cases have different convergence rates, as Berger (2001) finds

in the neoclassical model.

I demonstrate that the manner of technological growth, embodied or disembodied, affects

the optimal choices of actors in an economy.  Since their choices affect the equilibrium or the

transition to equilibrium, the form of technological growth can have important implications for

the central questions in growth economics.
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Appendix 1.  Vintage Capital Cobb-Douglas Production Maximization

At each instant, a static optimization takes place in which given the stocks of technology,

labor, and capital, labor must be allocated to the spectrum of vintages of capital in order to

maximize production.  The formal production maximization problem is

0

0

Maximize                 0 , , 1

over      
subject to:
              0

              

NA K

V

v v v A N K
v

v

v
V

v
v

Y A N K dv

N

N

N dv N

σσ σ σ σ σ
=

=

= < <

≥

≤

�

�

(95)

V is the newest vintage available.  vA  is the level of technology associated with vintage v.  vN ,

the sole choice variable, is the quantity of labor assigned to capital of vintage v.  N is the total

amount of labor available.  vK  is the amount of capital of vintage v available.  Assume that the

function ( ) A K
v vg v A Kσ σ=  is a positive, bounded, measurable function.

At a solution, the total labor constraint will hold with equality since the objective

function rewards the use of labor with each vintage and there is no cost of using labor.  It is also

true that at a solution 0vN >  almost everywhere, because the marginal product of labor of each

vintage goes to infinity as vN  goes to zero.

First I will show that 0   a.e.vN >   Let D and E be sets of equal positive measure, where

, [1, ]D E V∈ , with 0vN >  and finite for v D∈ ; and 0vN =  for v E∈ .  It will be shown there

exists an 0ε >  such that shifting ε  from each v DN ∈  to v EN ∈ , which is feasible, results in an

increase in production.
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The addition and reduction to production from the shift of  ε  are ( ) N

v E
g v dvσε

∈�  and

( )( ) ( )N N
v vv D

g v N N dvσ σε
∈

− −�  respectively.  Let sup v
v D

a N aNε
∈

= = , where a is a scalar and

sup v
v D

N N
∈

= .  The supremum exists since D is a compact set.  Let sup ( )
v D

G g v
∈

= , inf ( )
v E

g g v
∈

= ,

and ( )m D  equal the measure of set D.

( ) ( )
( )
( )

( ) ( ) ( ) ( )

                                                 ( )

                                                 1 (1 ) ( )

N N N N

N N

N N

v v v vv D v D

v D

g v N N dv g v N N aN dv

G N N aN dv

GN a m D

σ σ σ σ

σ σ

σ σ

ε
∈ ∈

∈

− − = − −

≤ − −

= − − ⋅

� �

�

( ) ( )( )

                      

                      ( )

N N

N N

N N

v E v E

v E

g v dv g v aN dv

ga N dv

ga N m D

σ σ

σ σ

σ σ

ε
∈ ∈

∈

=

≥

= ⋅

� �

�

Thus, ( )( ) ( ) ( )N N N
v vv E v D

g v dv g v N N dvσ σ σε ε
∈ ∈

> − −� �  if ( )1 (1 )N Nga G aσ σ> − − .  This statement

is true if 
1 (1 )

N

N

a G
ga

σ

σ >
− −

.  This inequality is true for small enough a, since 
1 (1 )

N

N

a
a

σ

σ → ∞
− −

 as

0a → .  Therefore, since E was an arbitrary set, there can be no set of positive measure such that

the labor applied to the vintages of that set equals zero.

The lagrangian for (95) is:

0 0

( ; ) NA K

V V

v v v v v
v v

L N A N K dv N N dvσσ σλ λ
= =

� �
= + −� �

� �
� � (96)

A representative first order condition is:

1 0NA K
N v v v

v

L A N K
N

σσ σσ λ−∂ = − =
∂

(97)
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(97) must hold almost everywhere, and an equality can be used instead of an inequality because

0vN >  a.e. at a solution. (97) states that the marginal product of labor of each vintage must be

equal to the shadow value of labor.  Labor, being homogeneous, has a unique shadow value

regardless of the vintage to which it is applied.  Setting two first order conditions for different

vintages equal to each other we obtain:

1 1N NA K A K
i i i j j jA N K A N Kσ σσ σ σ σ− −= (98)

Solving for iN

1 1
A K

N N
i i

i j
j j

A KN N
A K

σ σ
σ σ− −� � � �

= � � � �� � � �
� � � �

(99)

This equation must hold true for every i given fixed ,  ,j jA N  and jK .  Therefore, integrating

over the iN :

1 1

0 01 1

A K

N N

A K

N N

V V
j

i i i
i i

j j

N
N N di A K di

A K

σ σ
σ σ

σ σ
σ σ

− −

= =− −

= =� � (100)

Solving for jN  in terms of the given parameters we obtain a closed form solution for each

choice variable.  This solution must hold almost everywhere.

1 1
*

1 1

0

A K

N N

j A K

N N

j j

V

i i
i

NA K
N

A K di

σ σ
σ σ

σ σ
σ σ

− −

− −

=

=

�

(101)

Let

1 1

0

A K

N N

V

i i
i

Q A K di
σ σ
σ σ− −

=

= � (102)
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Q can be viewed as an aggregated capital stock with the weights of each vintage a function of the

technology inherent in each vintage and the production elasticities.

Substituting *
jN  into the direct production function, we obtain the indirect production

function, which is a function only of given parameters.

1 1
*

0

1 1

0
1

( , , , , , )

                                     

                                     

N
A K

N N
A K

A K

N N N N

N N

V
v v

A N K v v
v

V

v v
v

NA KY A N K A K dv
Q

N Q A K dv

N Q

σσ σ
σ σ

σ σ

σ σ
σ σ σ σ

σ σ

σ σ σ
− −

=

− − −

=
−

� �
� �= � �
� �
� �

=

=

�

� (103)
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TABLES

Table 1.  Benchmark parameter values: AK research sector
ρ n Kσ Aδ Kδ

.03 .015 .35 .01 .05

Table 2.  Labor Allocation to Final Goods (m), benchmark parameters,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 2.925 1.95 1.625 1.4625 1.365 1.3 1.2536 1.2188 1.1917 1.17
0.03 0.3083 0.65 0.7639 0.8208 0.855 0.8778 0.894 0.9063 0.9157 0.9233
0.05 -0.215 0.39 0.5917 0.6925 0.753 0.7933 0.8221 0.8438 0.8606 0.874
0.07 -0.4393 0.2786 0.5179 0.6375 0.7093 0.7571 0.7913 0.817 0.8369 0.8529
0.09 -0.5639 0.2167 0.4769 0.6069 0.685 0.737 0.7742 0.8021 0.8238 0.8411
0.11 -0.6432 0.1773 0.4508 0.5875 0.6695 0.7242 0.7633 0.7926 0.8154 0.8336
0.13 -0.6981 0.15 0.4327 0.574 0.6588 0.7154 0.7558 0.7861 0.8096 0.8285
0.15 -0.7383 0.13 0.4194 0.5642 0.651 0.7089 0.7502 0.7812 0.8054 0.8247
0.17 -0.7691 0.1147 0.4093 0.5566 0.645 0.7039 0.746 0.7776 0.8021 0.8218
0.19 -0.7934 0.1026 0.4013 0.5507 0.6403 0.7 0.7427 0.7747 0.7996 0.8195
0.21 -0.8131 0.0929 0.3948 0.5458 0.6364 0.6968 0.74 0.7723 0.7975 0.8176
0.23 -0.8293 0.0848 0.3895 0.5418 0.6333 0.6942 0.7377 0.7704 0.7958 0.8161
0.25 -0.843 0.078 0.385 0.5385 0.6306 0.692 0.7359 0.7688 0.7943 0.8148
0.27 -0.8546 0.0722 0.3812 0.5356 0.6283 0.6901 0.7343 0.7674 0.7931 0.8137
0.29 -0.8647 0.0672 0.3779 0.5332 0.6264 0.6885 0.7329 0.7662 0.792 0.8128
0.31 -0.8734 0.0629 0.375 0.531 0.6247 0.6871 0.7317 0.7651 0.7911 0.8119
0.33 -0.8811 0.0591 0.3725 0.5292 0.6232 0.6859 0.7306 0.7642 0.7903 0.8112
0.35 -0.8879 0.0557 0.3702 0.5275 0.6219 0.6848 0.7297 0.7634 0.7896 0.8106
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Table 3.  Labor Allocation to Final Goods (m), no depreciation,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 1.925 1.95 1.9583 1.9625 1.965 1.9667 1.9679 1.9688 1.9694 1.97
0.03 -0.025 0.65 0.875 0.9875 1.055 1.1 1.1321 1.1563 1.175 1.19
0.05 -0.415 0.39 0.6583 0.7925 0.873 0.9267 0.965 0.9938 1.0161 1.034
0.07 -0.5821 0.2786 0.5655 0.7089 0.795 0.8524 0.8934 0.9241 0.948 0.9671
0.09 -0.675 0.2167 0.5139 0.6625 0.7517 0.8111 0.8536 0.8854 0.9102 0.93
0.11 -0.7341 0.1773 0.4811 0.633 0.7241 0.7848 0.8282 0.8608 0.8861 0.9064
0.13 -0.775 0.15 0.4583 0.6125 0.705 0.7667 0.8107 0.8437 0.8694 0.89
0.15 -0.805 0.13 0.4417 0.5975 0.691 0.7533 0.7979 0.8312 0.8572 0.878
0.17 -0.8279 0.1147 0.4289 0.586 0.6803 0.7431 0.788 0.8217 0.8479 0.8688
0.19 -0.8461 0.1026 0.4189 0.577 0.6718 0.7351 0.7803 0.8141 0.8405 0.8616
0.21 -0.8607 0.0929 0.4107 0.5696 0.665 0.7286 0.774 0.808 0.8345 0.8557
0.23 -0.8728 0.0848 0.404 0.5636 0.6593 0.7232 0.7688 0.803 0.8296 0.8509
0.25 -0.883 0.078 0.3983 0.5585 0.6546 0.7187 0.7644 0.7988 0.8254 0.8468
0.27 -0.8917 0.0722 0.3935 0.5542 0.6506 0.7148 0.7607 0.7951 0.8219 0.8433
0.29 -0.8991 0.0672 0.3894 0.5504 0.6471 0.7115 0.7575 0.792 0.8189 0.8403
0.31 -0.9056 0.0629 0.3858 0.5472 0.644 0.7086 0.7547 0.7893 0.8162 0.8377
0.33 -0.9114 0.0591 0.3826 0.5443 0.6414 0.7061 0.7523 0.7869 0.8139 0.8355
0.35 -0.9164 0.0557 0.3798 0.5418 0.639 0.7038 0.7501 0.7848 0.8118 0.8334

Table 4.  Savings Rate (s), benchmark parameters,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0.298 0.2404 0.2212 0.2115 0.2058 0.2019 0.1992 0.1971 0.1955 0.1943
0.05 0 0.267 0.2241 0.2027 0.1898 0.1812 0.1751 0.1705 0.1669 0.164
0.07 0 0.2833 0.2259 0.1972 0.18 0.1686 0.1604 0.1542 0.1495 0.1456
0.09 0 0.2942 0.2271 0.1936 0.1735 0.1601 0.1505 0.1433 0.1377 0.1333
0.11 0 0.302 0.228 0.191 0.1688 0.154 0.1434 0.1355 0.1293 0.1244
0.13 0 0.3079 0.2287 0.189 0.1652 0.1494 0.1381 0.1296 0.123 0.1177
0.15 0 0.3126 0.2292 0.1875 0.1625 0.1458 0.1339 0.1249 0.118 0.1124
0.17 0 0.3163 0.2296 0.1862 0.1602 0.1429 0.1305 0.1212 0.114 0.1082
0.19 0 0.3193 0.2299 0.1852 0.1584 0.1406 0.1278 0.1182 0.1108 0.1048
0.21 0 0.3218 0.2302 0.1844 0.1569 0.1386 0.1255 0.1157 0.108 0.1019
0.23 0 0.324 0.2304 0.1837 0.1556 0.1369 0.1235 0.1135 0.1057 0.0995
0.25 0 0.3258 0.2306 0.1831 0.1545 0.1355 0.1219 0.1117 0.1037 0.0974
0.27 0 0.3274 0.2308 0.1825 0.1535 0.1342 0.1204 0.1101 0.102 0.0956
0.29 0 0.3288 0.231 0.1821 0.1527 0.1331 0.1192 0.1087 0.1005 0.094
0.31 0 0.3301 0.2311 0.1816 0.152 0.1322 0.118 0.1074 0.0992 0.0926
0.33 0 0.3312 0.2312 0.1813 0.1513 0.1313 0.117 0.1063 0.098 0.0914
0.35 0 0.3321 0.2313 0.181 0.1507 0.1306 0.1162 0.1054 0.097 0.0902
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Table 5.  Savings Rate (s), no depreciation,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0 0.1783 0.1189 0.0892 0 0 0 0 0 0
0.05 0 0.2358 0.1572 0.1179 0.0943 0.0786 0.0674 0.0589 0 0
0.07 0 0.2644 0.1763 0.1322 0.1058 0.0881 0.0755 0.0661 0.0588 0.0529
0.09 0 0.2816 0.1877 0.1408 0.1126 0.0939 0.0805 0.0704 0.0626 0.0563
0.11 0 0.293 0.1953 0.1465 0.1172 0.0977 0.0837 0.0733 0.0651 0.0586
0.13 0 0.3012 0.2008 0.1506 0.1205 0.1004 0.086 0.0753 0.0669 0.0602
0.15 0 0.3073 0.2049 0.1536 0.1229 0.1024 0.0878 0.0768 0.0683 0.0615
0.17 0 0.312 0.208 0.156 0.1248 0.104 0.0892 0.078 0.0693 0.0624
0.19 0 0.3158 0.2106 0.1579 0.1263 0.1053 0.0902 0.079 0.0702 0.0632
0.21 0 0.3189 0.2126 0.1595 0.1276 0.1063 0.0911 0.0797 0.0709 0.0638
0.23 0 0.3215 0.2144 0.1608 0.1286 0.1072 0.0919 0.0804 0.0715 0.0643
0.25 0 0.3237 0.2158 0.1619 0.1295 0.1079 0.0925 0.0809 0.0719 0.0647
0.27 0 0.3256 0.2171 0.1628 0.1302 0.1085 0.093 0.0814 0.0724 0.0651
0.29 0 0.3272 0.2182 0.1636 0.1309 0.1091 0.0935 0.0818 0.0727 0.0654
0.31 0 0.3287 0.2191 0.1643 0.1315 0.1096 0.0939 0.0822 0.073 0.0657
0.33 0 0.3299 0.2199 0.165 0.132 0.11 0.0943 0.0825 0.0733 0.066
0.35 0 0.331 0.2207 0.1655 0.1324 0.1103 0.0946 0.0828 0.0736 0.0662

Table 6.   Growth Rate of Output (gy), benchmark parameters,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0.0315 0.0158 0.0105 0.0079 0.0063 0.0053 0.0045 0.0039 0.0035 0.0032
0.05 0 0.0465 0.031 0.0233 0.0186 0.0155 0.0133 0.0116 0.0103 0.0093
0.07 0 0.0773 0.0515 0.0387 0.0309 0.0258 0.0221 0.0193 0.0172 0.0155
0.09 0 0.1081 0.0721 0.054 0.0432 0.036 0.0309 0.027 0.024 0.0216
0.11 0 0.1388 0.0926 0.0694 0.0555 0.0463 0.0397 0.0347 0.0309 0.0278
0.13 0 0.1696 0.1131 0.0848 0.0678 0.0565 0.0485 0.0424 0.0377 0.0339
0.15 0 0.2004 0.1336 0.1002 0.0802 0.0668 0.0573 0.0501 0.0445 0.0401
0.17 0 0.2312 0.1541 0.1156 0.0925 0.0771 0.066 0.0578 0.0514 0.0462
0.19 0 0.2619 0.1746 0.131 0.1048 0.0873 0.0748 0.0655 0.0582 0.0524
0.21 0 0.2927 0.1951 0.1463 0.1171 0.0976 0.0836 0.0732 0.065 0.0585
0.23 0 0.3235 0.2156 0.1617 0.1294 0.1078 0.0924 0.0809 0.0719 0.0647
0.25 0 0.3542 0.2362 0.1771 0.1417 0.1181 0.1012 0.0886 0.0787 0.0708
0.27 0 0.385 0.2567 0.1925 0.154 0.1283 0.11 0.0963 0.0856 0.077
0.29 0 0.4158 0.2772 0.2079 0.1663 0.1386 0.1188 0.1039 0.0924 0.0832
0.31 0 0.4465 0.2977 0.2233 0.1786 0.1488 0.1276 0.1116 0.0992 0.0893
0.33 0 0.4773 0.3182 0.2387 0.1909 0.1591 0.1364 0.1193 0.1061 0.0955
0.35 0 0.5081 0.3387 0.254 0.2032 0.1694 0.1452 0.127 0.1129 0.1016
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Table 7.   Growth Rate of Output (gy), no depreciation,
AK research sector, non-vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0 0.0312 0.0208 0.0156 0 0 0 0 0 0
0.05 0 0.0619 0.0413 0.031 0.0248 0.0206 0.0177 0.0155 0 0
0.07 0 0.0927 0.0618 0.0463 0.0371 0.0309 0.0265 0.0232 0.0206 0.0185
0.09 0 0.1235 0.0823 0.0617 0.0494 0.0412 0.0353 0.0309 0.0274 0.0247
0.11 0 0.1542 0.1028 0.0771 0.0617 0.0514 0.0441 0.0386 0.0343 0.0308
0.13 0 0.185 0.1233 0.0925 0.074 0.0617 0.0529 0.0463 0.0411 0.037
0.15 0 0.2158 0.1438 0.1079 0.0863 0.0719 0.0616 0.0539 0.0479 0.0432
0.17 0 0.2465 0.1644 0.1233 0.0986 0.0822 0.0704 0.0616 0.0548 0.0493
0.19 0 0.2773 0.1849 0.1387 0.1109 0.0924 0.0792 0.0693 0.0616 0.0555
0.21 0 0.3081 0.2054 0.154 0.1232 0.1027 0.088 0.077 0.0685 0.0616
0.23 0 0.3388 0.2259 0.1694 0.1355 0.1129 0.0968 0.0847 0.0753 0.0678
0.25 0 0.3696 0.2464 0.1848 0.1478 0.1232 0.1056 0.0924 0.0821 0.0739
0.27 0 0.4004 0.2669 0.2002 0.1602 0.1335 0.1144 0.1001 0.089 0.0801
0.29 0 0.4312 0.2874 0.2156 0.1725 0.1437 0.1232 0.1078 0.0958 0.0862
0.31 0 0.4619 0.3079 0.231 0.1848 0.154 0.132 0.1155 0.1026 0.0924
0.33 0 0.4927 0.3285 0.2463 0.1971 0.1642 0.1408 0.1232 0.1095 0.0985
0.35 0 0.5235 0.349 0.2617 0.2094 0.1745 0.1496 0.1309 0.1163 0.1047

Table 8.   Labor Allocation to Final Goods (m), benchmark parameters,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 1.4019 1.3168
0.03 0.4504 0 0 0 0 0 0 1.0729 1.0535 1.0426
0.05 -0.1924 0.4759 0.7732 0.9036 0.9544 0.9725 0.98 0.9839 0.9862 0.9878
0.07 -0.3609 0.3146 0.6314 0.7857 0.865 0.908 0.9327 0.9477 0.9575 0.9643
0.09 -0.445 0.2368 0.5663 0.7333 0.8238 0.8759 0.9076 0.928 0.9416 0.9513
0.11 -0.4957 0.1902 0.5277 0.7021 0.7989 0.8562 0.892 0.9155 0.9315 0.943
0.13 -0.5297 0.159 0.5018 0.6813 0.7823 0.8429 0.8813 0.9069 0.9246 0.9372
0.15 -0.554 0.1366 0.4833 0.6663 0.7703 0.8332 0.8736 0.9006 0.9194 0.933
0.17 -0.5724 0.1198 0.4694 0.6551 0.7612 0.8259 0.8677 0.8958 0.9155 0.9298
0.19 -0.5866 0.1066 0.4585 0.6463 0.7541 0.8202 0.863 0.892 0.9124 0.9273
0.21 -0.5981 0.0961 0.4498 0.6392 0.7484 0.8156 0.8593 0.889 0.9099 0.9252
0.23 -0.6075 0.0875 0.4426 0.6334 0.7437 0.8118 0.8562 0.8864 0.9079 0.9235
0.25 -0.6153 0.0803 0.4367 0.6286 0.7398 0.8086 0.8536 0.8843 0.9061 0.9221
0.27 -0.6219 0.0742 0.4316 0.6245 0.7365 0.8059 0.8514 0.8825 0.9046 0.9209
0.29 -0.6276 0.0689 0.4273 0.621 0.7336 0.8036 0.8495 0.881 0.9034 0.9198
0.31 -0.6326 0.0644 0.4235 0.6179 0.7311 0.8016 0.8479 0.8796 0.9023 0.9189
0.33 -0.6369 0.0604 0.4202 0.6152 0.729 0.7998 0.8464 0.8784 0.9013 0.9181
0.35 -0.6407 0.0568 0.4173 0.6129 0.727 0.7983 0.8451 0.8774 0.9004 0.9174
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Table 9.   Labor Allocation to Final Goods (m), no depreciation,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 -0.0246 0 0 0 0 0 0 0 0 0
0.05 -0.3437 0.4806 0 0 0 0 0 0 0 0
0.07 -0.4567 0.3156 0.7379 0 0 0 0 0 0 0
0.09 -0.5154 0.2372 0.6328 0.8833 0 0 0 0 0 0
0.11 -0.5514 0.1904 0.5775 0.7974 0 0 0 0 0 0
0.13 -0.5757 0.1591 0.5419 0.755 0.893 0 0 0 0 0
0.15 -0.5933 0.1367 0.517 0.7271 0.8561 0 0 0 0 0
0.17 -0.6066 0.1198 0.4984 0.7069 0.8327 0.9199 0 0 0 0
0.19 -0.6169 0.1067 0.4841 0.6916 0.8158 0.898 0 0 0 0
0.21 -0.6253 0.0961 0.4726 0.6795 0.8028 0.8829 0.9426 0 0 0
0.23 -0.6322 0.0875 0.4633 0.6697 0.7924 0.8713 0.9273 0 0 0
0.25 -0.6379 0.0803 0.4555 0.6616 0.7839 0.8622 0.9164 0.9605 0 0
0.27 -0.6428 0.0742 0.4489 0.6548 0.7768 0.8546 0.908 0.9483 0 0
0.29 -0.6469 0.0689 0.4433 0.6489 0.7708 0.8483 0.9011 0.9398 0.9762 0
0.31 -0.6506 0.0644 0.4384 0.6439 0.7656 0.8429 0.8953 0.9332 0.9641 0
0.33 -0.6538 0.0604 0.4341 0.6395 0.7611 0.8383 0.8904 0.9277 0.9568 0
0.35 -0.6566 0.0569 0.4304 0.6356 0.7572 0.8342 0.8861 0.9231 0.9513 0.977

Table 10.   Savings Rate (s), benchmark parameters,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0.2948 0 0 0 0 0 0 0 0 0
0.05 0 0.2868 0.2268 0.1865 0.1654 0.1566 0.1527 0.1506 0.1493 0.1484
0.07 0 0.3099 0.2556 0.218 0.1924 0.1755 0.1644 0.1568 0.1516 0.1478
0.09 0 0.3203 0.267 0.2294 0.2026 0.1836 0.1699 0.1601 0.1528 0.1474
0.11 0 0.3263 0.2735 0.2357 0.2083 0.1882 0.1733 0.1621 0.1536 0.1471
0.13 0 0.3302 0.2777 0.2398 0.212 0.1912 0.1755 0.1635 0.1542 0.1469
0.15 0 0.3331 0.2806 0.2427 0.2145 0.1933 0.1771 0.1645 0.1546 0.1468
0.17 0 0.3352 0.2828 0.2448 0.2164 0.1949 0.1782 0.1652 0.1549 0.1467
0.19 0 0.3368 0.2845 0.2464 0.2179 0.1961 0.1792 0.1658 0.1552 0.1466
0.21 0 0.3381 0.2859 0.2477 0.2191 0.1971 0.1799 0.1663 0.1554 0.1465
0.23 0 0.3392 0.287 0.2488 0.22 0.1979 0.1805 0.1667 0.1555 0.1465
0.25 0 0.3401 0.2879 0.2497 0.2208 0.1986 0.181 0.167 0.1557 0.1464
0.27 0 0.3409 0.2886 0.2504 0.2215 0.1991 0.1815 0.1673 0.1558 0.1464
0.29 0 0.3415 0.2893 0.2511 0.2221 0.1996 0.1818 0.1675 0.1559 0.1463
0.31 0 0.3421 0.2899 0.2516 0.2226 0.2 0.1821 0.1677 0.156 0.1463
0.33 0 0.3426 0.2904 0.2521 0.223 0.2004 0.1824 0.1679 0.1561 0.1463
0.35 0 0.343 0.2908 0.2525 0.2234 0.2007 0.1827 0.1681 0.1561 0.1462
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Table 11.   Savings Rate (s), no depreciation,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0 0 0 0 0 0 0 0 0 0
0.05 0 0.284 0 0 0 0 0 0 0 0
0.07 0 0.3089 0.2273 0 0 0 0 0 0 0
0.09 0 0.3197 0.2513 0.175 0 0 0 0 0 0
0.11 0 0.3259 0.2624 0.2057 0 0 0 0 0 0
0.13 0 0.33 0.269 0.2179 0.1658 0 0 0 0 0
0.15 0 0.3329 0.2735 0.2252 0.1812 0 0 0 0 0
0.17 0 0.3351 0.2768 0.2303 0.1898 0.1482 0 0 0 0
0.19 0 0.3367 0.2793 0.234 0.1956 0.1595 0 0 0 0
0.21 0 0.3381 0.2812 0.2368 0.1998 0.1665 0.1308 0 0 0
0.23 0 0.3391 0.2828 0.2391 0.2031 0.1715 0.1406 0 0 0
0.25 0 0.3401 0.2841 0.2409 0.2057 0.1752 0.1468 0.1142 0 0
0.27 0 0.3408 0.2852 0.2425 0.2078 0.1782 0.1513 0.1238 0 0
0.29 0 0.3415 0.2862 0.2437 0.2095 0.1806 0.1548 0.1298 0.0962 0
0.31 0 0.342 0.287 0.2448 0.211 0.1827 0.1577 0.1342 0.1084 0
0.33 0 0.3425 0.2877 0.2458 0.2123 0.1844 0.16 0.1376 0.1147 0
0.35 0 0.343 0.2883 0.2466 0.2134 0.1858 0.162 0.1403 0.1191 0.0929

Table 12.   Growth Rate of Output (gy), benchmark parameters,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0.025 0 0 0 0 0 0 0 0 0
0.05 0 0.0399 0.0171 0.007 0.0031 0.0017 0.0012 0.0009 0.0007 0.0006
0.07 0 0.0734 0.0393 0.0227 0.0141 0.0095 0.0069 0.0052 0.0042 0.0035
0.09 0 0.1053 0.0597 0.0365 0.024 0.0168 0.0124 0.0096 0.0077 0.0064
0.11 0 0.1367 0.0796 0.05 0.0336 0.0239 0.0179 0.0139 0.0112 0.0093
0.13 0 0.1678 0.0993 0.0634 0.0432 0.031 0.0233 0.0182 0.0147 0.0122
0.15 0 0.1989 0.1189 0.0766 0.0526 0.0381 0.0288 0.0226 0.0182 0.0151
0.17 0 0.2298 0.1384 0.0898 0.0621 0.0451 0.0342 0.0269 0.0217 0.018
0.19 0 0.2607 0.1579 0.103 0.0715 0.0522 0.0397 0.0312 0.0252 0.0209
0.21 0 0.2916 0.1774 0.1162 0.0809 0.0592 0.0451 0.0355 0.0287 0.0238
0.23 0 0.3225 0.1968 0.1293 0.0903 0.0662 0.0505 0.0398 0.0322 0.0267
0.25 0 0.3534 0.2163 0.1425 0.0997 0.0732 0.0559 0.0441 0.0357 0.0296
0.27 0 0.3842 0.2357 0.1556 0.1091 0.0802 0.0613 0.0484 0.0392 0.0325
0.29 0 0.415 0.2551 0.1687 0.1185 0.0872 0.0668 0.0527 0.0427 0.0354
0.31 0 0.4458 0.2746 0.1818 0.1278 0.0942 0.0722 0.057 0.0462 0.0383
0.33 0 0.4767 0.294 0.195 0.1372 0.1012 0.0776 0.0613 0.0497 0.0412
0.35 0 0.5075 0.3134 0.2081 0.1466 0.1082 0.083 0.0656 0.0532 0.0441
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Table 13.   Growth Rate of Output (gy), no depreciation,
AK research sector, vintage capital

\g γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.01 0 0 0 0 0 0 0 0 0 0
0.03 0 0 0 0 0 0 0 0 0 0
0.05 0 0.055 0 0 0 0 0 0 0 0
0.07 0 0.0887 0.0432 0 0 0 0 0 0 0
0.09 0 0.1206 0.0658 0.0312 0 0 0 0 0 0
0.11 0 0.152 0.0865 0.0493 0 0 0 0 0 0
0.13 0 0.1832 0.1066 0.064 0.0364 0 0 0 0 0
0.15 0 0.2142 0.1265 0.078 0.0482 0 0 0 0 0
0.17 0 0.2452 0.1462 0.0916 0.0587 0.0359 0 0 0 0
0.19 0 0.2761 0.1658 0.1051 0.0688 0.0448 0 0 0 0
0.21 0 0.307 0.1854 0.1185 0.0787 0.0528 0.0335 0 0 0
0.23 0 0.3379 0.2049 0.1319 0.0885 0.0605 0.0407 0 0 0
0.25 0 0.3687 0.2244 0.1452 0.0981 0.068 0.0471 0.0302 0 0
0.27 0 0.3996 0.2439 0.1584 0.1077 0.0754 0.0532 0.0365 0 0
0.29 0 0.4304 0.2634 0.1716 0.1173 0.0827 0.0591 0.0418 0.0256 0
0.31 0 0.4612 0.2828 0.1848 0.1268 0.0899 0.0649 0.0469 0.0321 0
0.33 0 0.492 0.3023 0.198 0.1363 0.0971 0.0707 0.0517 0.0369 0
0.35 0 0.5228 0.3217 0.2112 0.1458 0.1043 0.0763 0.0564 0.0412 0.0274

Table 14.   Benchmark parameter values, Cobb-Douglas research sector
Yd Ad Aσ Nσ Kσ Aη Nη ρ n Aδ Kδ

1 1 .3 .6 .4 .6 .5 .04 .015 .01 .05

Table 15.  Equilibrium Values, benchmark parameters,
Cobb-Douglas research sector, non-vintage capital

γ m s , ,C Y Kg g g Ag gΦ gΛ

.5 .8454 .2911 .0244 .0188 -.0066 -.0122
1 .8775 .2601 .0244 .0188 -.0188 -.0244
2 .9135 .2144 .0244 .0188 -.0431 -.0488
3 .9331 .1824 .0244 .0188 -.0675 -.0731
5 .9540 .1404 .0244 .0188 -.1163 -.1219



39

Table 16.  Equilibrium Values, no depreciation,
Cobb-Douglas research sector, non-vintage capital

γ m s , ,C Y Kg g g Ag gΦ gΛ

.5 .8828 .1868 .0244 .0188 -.0066 -.0122
1 .9102 .1515 .0244 .0188 -.0188 -.0244
2 .9388 .1099 .0244 .0188 -.0431 -.0488
3 .9536 .0862 .0244 .0188 -.0675 -.0731
5 .9687 .0602 .0244 .0188 -.1163 -.1219

Table 17.  Equilibrium Values, benchmark parameters,
Cobb-Douglas research sector, vintage capital

γ m s ,C Yg g Ag Qg gΦ gΛ

.5 .8779 .3043 .0244 .0188 .0384 -.0066 -.0263
1 .9123 .2754 .0244 .0188 .0384 -.0188 -.0384
2 .9480 .2315 .0244 .0188 .0384 -.0431 -.0628
3 .9655 .1996 .0244 .0188 .0384 -.0675 -.0872
5 .9815 .1566 .0244 .0188 .0384 -.1163 -.1359

Table 18.  Equilibrium Values, no depreciation,
Cobb-Douglas research sector, vintage capital

γ m s ,C Yg g Ag Qg gΦ gΛ

.5 .9285 .2321 .0244 .0188 .0384 -.0066 -.0263
1 .9539 .1960 .0244 .0188 .0384 -.0188 -.0384
2 .9762 .1495 .0244 .0188 .0384 -.0431 -.0628
3 .9855 .1209 .0244 .0188 .0384 -.0675 -.0872
5 .9930 .0874 .0244 .0188 .0384 -.1163 -.1359
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